Source code for pacman.utilities.utility_calls
# Copyright (c) 2014 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib
import math
from typing import Any, Iterable, Tuple
import numpy
from pacman.model.graphs.common import Slice
[docs]
def expand_to_bit_array(value: int) -> numpy.ndarray:
"""
Expand a 32-bit value in to an array of length 32 of uint8 values,
each of which is a 1 or 0.
:param int value: The value to expand
:rtype: ~numpy.ndarray(uint8)
"""
return numpy.unpackbits(
numpy.asarray([value], dtype=">u4").view(dtype="uint8"))
[docs]
def compress_from_bit_array(bit_array: numpy.ndarray) -> int:
"""
Compress a bit array of 32 uint8 values, where each is a 1 or 0,
into a 32-bit value.
:param ~numpy.ndarray(uint8) bit_array: The array to compress
:rtype: int
"""
return numpy.packbits(bit_array).view(dtype=">u4")[0].item()
[docs]
def compress_bits_from_bit_array(
bit_array: numpy.ndarray, bit_positions: numpy.ndarray) -> int:
"""
Compress specific positions from a bit array of 32 uint8 value,
where is a 1 or 0, into a 32-bit value.
:param ~numpy.ndarray(uint8) bit_array:
The array to extract the value from
:param ~numpy.ndarray(int) bit_positions:
The positions of the bits to extract,
each value being between 0 and 31
:rtype: int
"""
expanded_value = numpy.zeros(32, dtype="uint8")
expanded_value[-len(bit_positions):] = bit_array[bit_positions]
return compress_from_bit_array(expanded_value)
[docs]
def is_equal_or_none(a: Any, b: Any) -> bool:
"""
If a and b are both not `None`, return True if and only if they are equal,
otherwise return True.
:rtype: bool
"""
return (a is None or b is None or a == b)
[docs]
def is_single(iterable: Iterable[Any]) -> bool:
"""
Test if there is exactly one item in the iterable.
:rtype: bool
"""
iterator = iter(iterable)
# Test if there is a first item, if not return False
if next(iterator, None) is None:
return False
# Test if there is a second item, if not return True
if next(iterator, None) is None:
return True
# Otherwise return False
return False
[docs]
def md5(string: str) -> str:
"""
Get the MD5 hash of the given string, which is UTF-8 encoded.
:param str string:
:rtype: str
"""
return hashlib.md5(string.encode()).hexdigest()
[docs]
def get_key_ranges(key: int, mask: int) -> Iterable[Tuple[int, int]]:
"""
Get a generator of base_key, n_keys pairs that represent ranges
allowed by the mask.
:param int key: The base key
:param int mask: The mask
:rtype: iterable(tuple(int,int))
"""
unwrapped_mask = expand_to_bit_array(mask)
first_zeros = list()
remaining_zeros = list()
pos = len(unwrapped_mask) - 1
# Keep the indices of the first set of zeros
while pos >= 0 and unwrapped_mask[pos] == 0:
first_zeros.append(pos)
pos -= 1
# Find all the remaining zeros
while pos >= 0:
if unwrapped_mask[pos] == 0:
remaining_zeros.append(pos)
pos -= 1
# Loop over 2^len(remaining_zeros) to produce the base key,
# with n_keys being 2^len(first_zeros)
n_sets = 2 ** len(remaining_zeros)
n_keys = 2 ** len(first_zeros)
if not remaining_zeros:
yield key, n_keys
return
unwrapped_key = expand_to_bit_array(key)
for value in range(n_sets):
generated_key = numpy.copy(unwrapped_key)
generated_key[remaining_zeros] = \
expand_to_bit_array(value)[-len(remaining_zeros):]
yield compress_from_bit_array(generated_key), n_keys
[docs]
def get_n_bits(n_values: int) -> int:
"""
Determine how many bits are required for the given number of values.
:param int n_values: the number of values (starting at 0)
:return: the number of bits required to express that many values
:rtype: int
"""
if n_values == 0:
return 0
if n_values == 1:
return 1
return int(math.ceil(math.log2(n_values)))
[docs]
def allocator_bits_needed(size: int) -> int:
"""
Get the bits needed for the routing info allocator.
:param int size: The size to calculate the number of bits for
:return: the number of bits required for that size
:rtype: int
"""
if size == 0:
return 0
return int(math.ceil(math.log2(size)))
[docs]
def get_keys(
base_key: int, vertex_slice: Slice,
n_extra_bits: int = 0) -> numpy.ndarray:
"""
Get the keys for a given vertex slice.
:param int base_key: The base key for the vertex slice
:param Slice vertex_slice: The slice of the vertex to get keys for
:param int n_extra_bits: Additional right shift to apply to atoms
:rtype: iterable(int)
"""
indices = numpy.arange(0, vertex_slice.n_atoms) << n_extra_bits
return base_key + indices
[docs]
def is_power_of_2(v: int) -> bool:
"""
Determine if a value is a power of 2.
:param int v: The value to test
:rtype: bool
"""
return (v & (v - 1) == 0) and (v != 0)