Source code for pacman.model.routing_info.base_key_and_mask
# Copyright (c) 2015 The University of Manchester
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional, Tuple
import numpy
from pacman.exceptions import PacmanConfigurationException
class BaseKeyAndMask(object):
"""
A Key and Mask to be used for routing.
"""
__slots__ = (
# The routing key
"_base_key",
# The routing mask
"_mask")
def __init__(self, base_key: int, mask: int):
"""
:param int base_key: The routing key
:param int mask: The routing mask
:raise PacmanConfigurationException:
If key & mask != key i.e. the key is not valid for the given mask
"""
self._base_key = base_key
self._mask = mask
if base_key & mask != base_key:
raise PacmanConfigurationException(
f"This routing info is invalid as the mask {hex(mask)} and "
f"key {hex(base_key)} together alters the key")
@property
def key(self) -> int:
"""
The base key.
:rtype: int
"""
return self._base_key
@property
def key_combo(self) -> int:
"""
The key combined with the mask.
:rtype: int
"""
return self._base_key & self._mask
@property
def mask(self) -> int:
"""
The mask.
:rtype: int
"""
return self._mask
def __eq__(self, key_and_mask: Any) -> bool:
if not isinstance(key_and_mask, BaseKeyAndMask):
return False
return (self._base_key == key_and_mask.key and
self._mask == key_and_mask.mask)
def __ne__(self, other: Any) -> bool:
return not self.__eq__(other)
def __repr__(self) -> str:
return f"KeyAndMask:0x{self._base_key:x}:0x{self._mask:x}"
def __str__(self) -> str:
return self.__repr__()
def __hash__(self) -> int:
return self._base_key ^ self._mask
@property
def n_keys(self) -> int:
"""
The total number of keys that can be generated given the mask.
:rtype: int
"""
# converts mask into array of bit representation
unwrapped_mask = numpy.unpackbits(
numpy.asarray([self._mask], dtype=">u4").view(dtype="uint8"))
# how many zeros are in the bit representation array
zeros = numpy.where(unwrapped_mask == 0)[0]
# number of keys available from this mask size
return 2 ** len(zeros)
[docs]
def get_keys(
self, key_array: Optional[numpy.ndarray] = None, offset: int = 0,
n_keys: Optional[int] = None) -> Tuple[numpy.ndarray, int]:
"""
Get the ordered list of keys that the combination allows.
:param ~numpy.ndarray(int) key_array:
Optional array into which the returned keys will be placed
:param int offset:
Optional offset into the array at which to start placing keys
:param int n_keys:
Optional limit on the number of keys returned. If less than this
number of keys are available, only the keys available will be added
:return: A tuple of an array of keys and the number of keys added to
the array
:rtype: tuple(~numpy.ndarray(int), int)
"""
# Get the position of the zeros in the mask - assume 32-bits
unwrapped_mask = numpy.unpackbits(
numpy.asarray([self._mask], dtype=">u4").view(dtype="uint8"))
zeros = numpy.where(unwrapped_mask == 0)[0]
# If there are no zeros, there is only one key in the range, so
# return that
if len(zeros) == 0:
if key_array is None:
key_array = numpy.zeros(1, dtype=">u4")
key_array[offset] = self._base_key
return key_array, 1
# We now know how many values there are - 2^len(zeros)
max_n_keys: int = 2 ** len(zeros)
if key_array is not None and len(key_array) < max_n_keys:
max_n_keys = len(key_array)
if n_keys is None:
n_keys = max_n_keys
else:
n_keys = min(n_keys, max_n_keys)
if key_array is None:
key_array = numpy.zeros(n_keys, dtype=">u4")
# Create a list of 2^len(zeros) keys
unwrapped_key = numpy.unpackbits(
numpy.asarray([self._base_key], dtype=">u4").view(dtype="uint8"))
# for each key, create its key with the idea of a neuron ID being
# continuous and live at an offset position from the bottom of
# the key
for value in range(n_keys):
key = numpy.copy(unwrapped_key)
unwrapped_value = numpy.unpackbits(
numpy.asarray([value], dtype=">u4")
.view(dtype="uint8"))[-len(zeros):]
key[zeros] = unwrapped_value
key_array[value + offset] = \
numpy.packbits(key).view(dtype=">u4")[0].item()
return key_array, n_keys