Source code for pacman.model.routing_info.base_key_and_mask

# Copyright (c) 2015 The University of Manchester
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional, Tuple
import numpy
from pacman.exceptions import PacmanConfigurationException

class BaseKeyAndMask(object):
    A Key and Mask to be used for routing.

    __slots__ = (
        # The routing key
        # The routing mask

    def __init__(self, base_key: int, mask: int):
        :param int base_key: The routing key
        :param int mask: The routing mask
        :raise PacmanConfigurationException:
            If key & mask != key i.e. the key is not valid for the given mask
        self._base_key = base_key
        self._mask = mask

        if base_key & mask != base_key:
            raise PacmanConfigurationException(
                f"This routing info is invalid as the mask {hex(mask)} and "
                f"key {hex(base_key)} together alters the key")

    def key(self) -> int:
        The base key.

        :rtype: int
        return self._base_key

    def key_combo(self) -> int:
        The key combined with the mask.

        :rtype: int
        return self._base_key & self._mask

    def mask(self) -> int:
        The mask.

        :rtype: int
        return self._mask

    def __eq__(self, key_and_mask: Any) -> bool:
        if not isinstance(key_and_mask, BaseKeyAndMask):
            return False
        return (self._base_key == key_and_mask.key and
                self._mask == key_and_mask.mask)

    def __ne__(self, other: Any) -> bool:
        return not self.__eq__(other)

    def __repr__(self) -> str:
        return f"KeyAndMask:0x{self._base_key:x}:0x{self._mask:x}"

    def __str__(self) -> str:
        return self.__repr__()

    def __hash__(self) -> int:
        return self._base_key ^ self._mask

    def n_keys(self) -> int:
        The total number of keys that can be generated given the mask.

        :rtype: int
        # converts mask into array of bit representation
        unwrapped_mask = numpy.unpackbits(
            numpy.asarray([self._mask], dtype=">u4").view(dtype="uint8"))

        # how many zeros are in the bit representation array
        zeros = numpy.where(unwrapped_mask == 0)[0]

        # number of keys available from this mask size
        return 2 ** len(zeros)

[docs] def get_keys( self, key_array: Optional[numpy.ndarray] = None, offset: int = 0, n_keys: Optional[int] = None) -> Tuple[numpy.ndarray, int]: """ Get the ordered list of keys that the combination allows. :param ~numpy.ndarray(int) key_array: Optional array into which the returned keys will be placed :param int offset: Optional offset into the array at which to start placing keys :param int n_keys: Optional limit on the number of keys returned. If less than this number of keys are available, only the keys available will be added :return: A tuple of an array of keys and the number of keys added to the array :rtype: tuple(~numpy.ndarray(int), int) """ # Get the position of the zeros in the mask - assume 32-bits unwrapped_mask = numpy.unpackbits( numpy.asarray([self._mask], dtype=">u4").view(dtype="uint8")) zeros = numpy.where(unwrapped_mask == 0)[0] # If there are no zeros, there is only one key in the range, so # return that if len(zeros) == 0: if key_array is None: key_array = numpy.zeros(1, dtype=">u4") key_array[offset] = self._base_key return key_array, 1 # We now know how many values there are - 2^len(zeros) max_n_keys: int = 2 ** len(zeros) if key_array is not None and len(key_array) < max_n_keys: max_n_keys = len(key_array) if n_keys is None: n_keys = max_n_keys else: n_keys = min(n_keys, max_n_keys) if key_array is None: key_array = numpy.zeros(n_keys, dtype=">u4") # Create a list of 2^len(zeros) keys unwrapped_key = numpy.unpackbits( numpy.asarray([self._base_key], dtype=">u4").view(dtype="uint8")) # for each key, create its key with the idea of a neuron ID being # continuous and live at an offset position from the bottom of # the key for value in range(n_keys): key = numpy.copy(unwrapped_key) unwrapped_value = numpy.unpackbits( numpy.asarray([value], dtype=">u4") .view(dtype="uint8"))[-len(zeros):] key[zeros] = unwrapped_value key_array[value + offset] = \ numpy.packbits(key).view(dtype=">u4")[0].item() return key_array, n_keys